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• Training a classifier in conditions similar to those encountered during everyday use 
provides improved system performance via reduced classification error. When 
extrinsic EMG are supplemented by intrinsic EMG, this error is also minimized. 

• Analyzing longer windows of data becomes more vital as more grasps are made 
available to the classifier. 

• With these additional techniques, low classification error rates can be achieved while 
still permitting the use of the wrist for daily activities. 

 

• Although myoelectric prostheses have recently become available to partial-hand 
amputees [1], current control methods are limited.  

• Pattern recognition of surface electromyography (EMG) acquired from the extrinsic hand 
muscles in the forearm could provide improved control. 

• EMG generated from wrist movement degrade hand grasp pattern recognition 
performance. We employed the following techniques to mitigate this degradation: 
• Incorporating intrinsic hand muscle EMG  
• Training a classifier in different wrist positions and during dynamic movements [2] 
• Increasing window length [3] 
• Reducing the number of grasps available to the classifier 

• Pattern recognition control of hand grasps, which accounts for wrist movement could 
lead to increased device adoption and use in daily activities. 

• Objective: Supplement a myoelectric pattern recognition system with these 
techniques and evaluate improvements in classifier performance. 

Data Collection 
Subjects 
• Recruited 9 able-bodied subjects 
Hand-Grasps 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wrist Positions 
1. With wrist in the neutral position and six 

other wrist positions (static wrist data) 
2. While moving wrist along each of its three 

degrees of freedom (dynamic wrist data) 

 
 
 

Electrode Placement 
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Extrinsic 52.74% 17.29% 34.17% 20.89% 

Intrinsic 32.97% 16.50% 28.39% 19.20% 

Extrinsic + 
Intrinsic 

36.72% 3.83% 15.16% 5.89% 

  Grasp Maintenance 

Extrinsic 22.19% 8.21% 6.87% 6.29% 

Intrinsic 11.75% 5.50% 4.38% 4.33% 

Extrinsic + 
Intrinsic 

15.05% 3.00% 1.98% 1.49% 

Results 

• Training classifier in multiple static wrist positions or during dynamic movements 
significantly reduced classification error (p<0.001) 

• Collecting from both extrinsic and intrinsic electrode locations significantly reduced 
classification error (p<0.001) 

Conclusions 
• Longer window lengths yield lower classification error, but provide smaller incremental 

improvements as window length increases (p<0.001) 
• Adding more grasps to a classifier increases classification error (p<0.001) 
• Longer window lengths provide greater performance improvement when more grasps 

are available during grasp selection (p<0.001) 
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Table 1. Classification error with different combinations of training methods and electrode 
placements, during grasp selection and grasp maintenance. Tests performed using a 250ms EMG 
window and with 6 grasps available to the classifier. Classifiers tested against data collected in all 
seven static wrist positions (selection), and in all positions and during all movements (maintenance). 

Figure 1. Grasps performed during experiment. 
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Offline Classifier Evaluation 
Classification Algorithm 
• Linear discriminant analysis [4] 
Muscle Group Training Sets 
1. Extrinsic muscle EMG 
2. Intrinsic muscle EMG 
3. Extrinsic and Intrinsic muscle EMG 
Wrist Training Sets 
1. Neutral wrist data 
2. Static wrist data 
3. Dynamic wrist data 
4. Static and dynamic wrist data 
Window Lengths 
• Feature extraction windows [3]: 

100, 200, 300, 400, 500 ms 
 

 
Grasp Modes 
• Grasp Selection 
o Classes: no movement, hand open, or 

one of N hand-grasps 
o Total of N+2 classes 
o Classifier tested with static data set 

• Grasp Maintenance:  
o Classifier selects from no movement, 

hand open, or hand close 
o Total of 3 classes 
o Classifier tested with static and dynamic 

data sets 
Statistics 
• 2-fold cross validation 
• 2-way ANOVA 
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Figure 3. Effect of window length and grasps available on classifier performance. Classifiers used all 
extrinsic and intrinsic EMG, and trained in all positions and during all movements. (a) Classification 
error during grasp selection, tested against data collected in all seven static wrist positions. (b) 
Classification error during grasp maintenance, tested against data collected in all positions and during 
all movements. 

Figure 2. Electrode placement. Electrodes 
1-8 cover extrinsic muscles, and electrodes 
9-12 cover intrinsic muscles. 
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